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South Africa’s geothermal energy hotspots inferred
from subsurface temperature and geology

South Africa intends to mitigate its carbon emissions by developing renewable energy from solar, wind
and hydro, and investigating alternative energy sources such as natural gas and nuclear. Low-enthalpy
geothermal energy is becoming increasingly popular around the world, largely as a result of technological
advances that have enabled energy to be harnessed from relatively low temperature sources. However,
geothermal energy does not form part of South Africa’s future renewable energy scenario. This omission
may be related to insufficient regional analysis of potentially viable geothermal zones across the country.
We considered existing subsurface temperature and heat flow measurements and performed solute-
based hydrochemical geothermometry to determine potentially anomalous geothermal gradients that
could signify underlying low-enthalpy geothermal energy resources. We correlated these findings against
hydro/geological and tectonic controls to find prospective target regions for investigating geothermal
energy development. Our results show a significant link between tectonic features, including those on-
craton, and the development of geothermal potential regions. In addition, potential regions in South Africa
share similarities with other locations that have successfully harnessed low-enthalpy geothermal
energy. South Africa may therefore have a realistic chance of developing geothermal energy, but will still
need additional research and development, including new temperature measurements, and structural,
hydrogeological and economic investigations.

Significance:

¢ The regional low-enthalpy geothermal energy potential of South Africa should be further researched for
consideration of low-enthalpy geothermal energy as a renewable energy option.

Introduction

South Africa is the leading carbon emitter in Africa and has one of the highest rates of emissions of nations in the
world." This status can be linked to South Africa’s vast coal resources, which are an important contributor to the
local mining sector and also account for more than 80% of South Africa’s energy generation." South Africa intends
to reduce its carbon emissions by producing about 40% of the country’s total energy through renewable sources
by 2030." This goal will be achieved mostly through solar-, wind- and hydro-generated forms of energy and largely
accelerated by a Renewable Energy Independent Power Producer Procurement Programme, which has attracted
considerable private-sector investment." Renewable energy alone will not meet South Africa’s growing energy
demands and therefore the country will also consider additional large-scale coal-fired energy, nuclear energy and
energy produced from shale gas.'

Low-enthalpy geothermal energy is becoming increasingly popular around the world.? This popularity is largely
because it requires geothermal gradients as low as ca 40 °C/km, which may be found in many global settings.
South Africa does not have any active or recent volcanism and is situated far from any active continental and/or
oceanic plate boundaries, but does have anomalously high heat flow regions that could meet the requirements for
low-enthalpy geothermal energy development.®®

In this study, we aimed to elaborate on potentially viable geothermal regions of South Africa. To do this, we
considered existing heat flow, heat productivity, downhole temperature and hot spring data to conduct estimates
of the geothermal gradient across South Africa. We calculated the geothermal gradient using thermodynamic
principles for historical heat flow and heat productivity data and from solute-based geothermometry on hot spring
hydrochemical data. We also correlated these results with high heat producing plutonic and volcano-sedimentary
rocks, and established underlying tectonic influences using regional seismicity. We used these results to present
a geothermal potential map of South Africa and we made recommendations toward including low-enthalpy
geothermal energy in South Africa’s future renewable energy mix scenario.

Low-enthalpy geothermal energy

Geothermal resources can be broadly classified into convective and conductive systems. These systems describe
regions of the upper crust that exhibit anomalously high heat flow, and either have naturally occurring and/or
circulating groundwater (i.e. convective), or are typically dry (i.e. conductive). Low-enthalpy geothermal resources
represent systems in which groundwater circulating from a reservoir would not reach the surface with a temperature
above ca 100 °C. High-enthalpy geothermal resources, on the other hand, are generally limited to global locations
with active plate tectonics and consequentially active/recent volcanism, and where groundwater is heated to near
and above supercritical levels. Low-enthalpy resources are usually associated with ancient tectonic activity and
are often defined by plutonic rocks with high concentrations of heat-producing radiogenic elements (e.g. uranium
and potassium) which are overlain by a thick and insulating volcano/sedimentary sequence. These conditions are
commonly found in most parts of the world and may account for the increase in global low-enthalpy geothermal
exploration (for more details refer to Huenges and Ledru?).
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Harvesting heat from a low-enthalpy geothermal resource commonly
uses a binary mechanism with two independent and separated working
fluids. In general, a geothermal fluid is circulated through a porous
fractured reservoir in a targeted high heat producing plutonic assembly.
Here simultaneous sequestration is also possible, for example through
the incorporation of carbon dioxide in the geothermal fluid. Once the
geothermal fluid is adequately heated, it is brought to the surface where
it enters a generation plant. Within the generation plant, the heated
geothermal fluid enters a heat-exchange mechanism under pressure
and interacts with a second organic fluid that has a much lower boiling
point. Conductive heat transfer causes the secondary fluid to flash to
steam, which is then used to produce energy. Thereafter, the organic
condensate is returned to the heat exchange system while the cooled
geothermal fluid is cycled back into the fractured reservoir (Figure 1).

A comparative example of low-enthalpy geothermal energy development
that may be considered here is within the Upper Rhine Graben (URG)
along the border between Germany and France. The URG highlights
extension along the Alpine foreland and in the Landau geothermal
region (southwest Germany); it consists of fractured Palagozoic
basement granite with uranium content of up to ca 10 PPMS, overlain
by ca 1.5-km thick Cenozoic, Mesozoic and Permian sedimentary rock
sequences’. Rifting makes the URG seismically active®, with significant
crustal thinning that enables uplift linked to mantle upwelling®. The
average geothermal gradient throughout the URG is ca 35-45 °C/km
with high heat flow evident from numerous hot springs. Hydrogeological
properties throughout the URG are highly complicated'®; however, the
average groundwater yield rate as measured around geothermal sites
and at a depth of ca 2 km is approximately 0.1 L/s."" An average 5 MW
low-enthalpy geothermal plant in the URG produces from reservoir
temperatures of about 130 °C at an average depth of 3.5-4.5 km and
production flow rates of 40-130 L/s."" Heated water is typically used to
run an Organic Rankine Cycle generation system with excess hot water
diverted to provide household heating. There is approximately 30 MW
of installed low-enthalpy geothermal capacity within the URG with
exploration and development continuing to increase."
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Source: Modified after Dhansay et al.*; refer to Huenges and Ledru? for more details.

Figure 1:  Schematic illustration of a binary fluid enhanced geothermal
system related to surrounding fracture-controlled geological
features.
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Geological controls on heat flow in South Africa

South Africa is partially underlain by the Kaapvaal Craton and its thick
subcontinental lithospheric mantle keel that reaches depths of up to
ca 250 km and has an average crustal thickness of 40-50 km'2 (Figure 2).
The Kaapvaal Craton comprises several smaller fragments of ancient
crust that amalgamated and stabilised during the early Archean. Regions
where amalgamation occurred appear as deep crustal discontinuities that
may be likened to more recent plate tectonic boundaries. In general, the
Kaapvaal Craton has a relatively low heat flow'*'¢, which has largely
discouraged extensive geothermal investigation. However, subsurface
temperature data suggest that there is at least some evidence for low-
enthalpy geothermal energy potential on the Kaapvaal Craton‘, and
especially on the surrounding palaeo-orogenic belts®. These orogenic
belts demarcate regions where continental collision had occurred.
Regions showing apparent low-enthalpy geothermal energy potential,
especially orogenic belts, share several characteristic geological and
tectonic similarities. Most notably, orogenic belts display significantly
higher heat flow signatures.® This characteristic is especially illustrated
by a ca 60 mW/m? heat flow increase across the boundary of the
Kaapvaal Craton and the Namaqua-Natal Belt'"'8, and similarly across
the Limpopo Belt®.

Each orogenic belt is associated with tectonic evolutionary processes
related to different supercontinent cycles; for example, the Limpopo Belt
formed during the amalgamation of the Kalahari Craton'®; the Namaqua-
Natal and Gariep Belts formed during the formation of Rodinia'®; and
the Cape Fold Belt formed during the formation of Gondwana®. During
these events convergent-related subduction resulted in the emplacement
of partial melt-derived plutonic rocks, many of which are rich in heat-
producing elements that release heat during the decay of radiogenic
elements (Figure 2). For example, the Cape Granite Suite (Cape Fold
Belt) has uranium concentrations of up to ca 34 PPM?'; the Namaqua-
Natal Belt has uranium concentrations of ca 10-54 PPM22; even
older Archean granite-gneisses around Mombela (Nelspruit)* and
Johanneshurg? exhibit uranium concentrations of up to ca 20-28 PPM.
In addition, Palagoproterozoic tectonic activity along the Thabazimbi-
Murchison Lineament®® may have assisted in the emplacement of the
Bushveld Complex, which includes felsic rocks that exhibit uranium
concentrations of up to 30 PPM?7.

Post-convergent extensive forces resulted in the formation of volcano-
sedimentary basins that overlie and insulate radiogenic plutonic
rocks, and often exhibit their own elevated heat-producing signatures,
particularly related to elevated and economically significant uranium
concentrations, e.g. the Karoo Basin (largely overlying the Cape Fold
Belt and the Namaqua-Natal Belt)?; the Soutpansberg (overlying
the Limpopo Belt) and Springbok Flats (overlying the Bushveld)?.
Significantly elevated radiogenic signatures are also evident within
the on-craton Archean Witwatersrand and Pongola Basin strata®®; and
especially from the Palaeoproterozoic Transvaal rocks. Here, partial
melt derived products associated with the emplacement of the Bushveld
Complex sometimes highlight anomalous uranium concentrations of up
to 250 PPM.Z

Higher heat flow signatures are further corroborated by numerous
hot springs concentrated along orogenic belts and below the Karoo
escarpment (Figure 2). Heating and circulation of groundwater is enabled
by complex brittle fracture networks that were formed and reactivated
during various plate tectonic events, e.g. hot springs located in the
Limpopo Belt use a fracture network that was largely created during
the Palaeoproterozoic and which underwent reactivation several times,
including during more recent Mesozoic uplift.%

Another important link between the orogenic zones is an elevated number
of natural seismic events® which highlight stress release-reactivation
along deep-seated brittle structures (Figure 2). For example, seismicity in
the Karoo may be correlated with structures in the underlying Namaqua-
Natal basement®; and anomalous radon release within the Cape Fold
Belt®, in addition to the occurrence of historically significant seismic
events®, highlight the influence of stress release along deep structures.
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Figure 2:  Overview of the major tectonic structures and zones across South Africa with the locations of significant earthquake focal mechanisms and
inferred structures related to these events. Locations of the various data sources used within this study (e.g. hot springs and temperature
measurement points) and high heat producing plutonic rocks are also highlighted. Note that the Namaqua-Natal Belt probably continues beneath

the Cape Fold Belt as far as the offshore Agulhas Fracture Zone.™

Geothermal gradient calculations

In this study, we considered available data (Figure 2; also refer to
supplementary material), including heat flow, heat productivity, downhole
temperature measurements and solute-based equilibria geothermometry
to highlight prospective zones for investigating low-enthalpy geothermal
energy development. We normalised across the various data sources
by calculating the theoretical geothermal gradient and using inverse
distance weighting to interpolate these results across South Africa. For
hot springs with only surface temperature information, we estimated
circulation depths of ca 2-5 km, which we inferred from shallow
geophysical investigations®®“°, surrounding heat flow measurements
and from deep borehole temperature data*'. We also identified important
tectonic structures and estimated the (most recent) underlying faulting
dynamics based on earthquake focal mechanisms.

We calculated the geothermal gradient from heat flow and heat
productivity data using principles of thermodynamics, where Q represents
the heat flow (mW/m?) and C represents the lithological thermal
conductivity (mW/m/°C). Where no thermal conductivity measurements
were available, we made estimations based on experimental thermal
conductivity calculations* and the known geological profiles. These
factors are related by Fourier’s Law:

a _ Q

@z~ Equation 1
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We also calculated the geothermal gradient by applying solute-based
equilibria geothermometry on available hot spring hydrochemical data
and relate these results against the inferred hot spring circulation
depths. Solute-based geothermometry estimates hot spring reservoir
temperatures using the presence of equilibrated mineral cations,
particularly silica, sodium and potassium.* Importantly, unknown fluid-
rock interactions and/or sporadic infiltration/flow rates insinuate that
hot spring reservoirs are not likely to be in a state of equilibrium and
therefore this technique may not provide exact reservoir temperatures.
Nevertheless, this method is still useful to establish a general estimate of
hot spring reservoir temperatures.** We used geothermometry limited to
a maximum allowable temperature of 250 °C, including the silica-cation
geothermometer:

1309
-

519- /og3i>'273'15

where T is the reservoir temperature and Si is the concentration of
dissolved silica in the water. We also used the Na-K geothermometer
for springs with insignificant silica content and/or if silica content was
not measured, where Na and K represent the concentration of dissolved
sodium and potassium, respectively:

1217
= <|og<"’a>+ 1 483>
Nal, 5.

Equation 2

Equation 3
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Anomalous heat flow regions in South Africa

The results of the geothermal gradient calculations are summarised
in Figure 3. In general, the highest calculated geothermal gradients are
closely related to naturally occurring seismic events and are situated within
orogenic belts surrounding the Kaapvaal Craton. In addition, these orogenic
zones account for the largest number of hot springs in South Africa.
Anomalous geothermal gradients and hot springs are also found on the
Kaapvaal Craton and are notably related to mapped cratonic discontinuities
(e.g. the Colesberg and Thabazimbi-Murchison Lineaments). There is also
a strong correlation between high geothermal gradients and the outcrop
pattern of highly radiogenic plutonic rocks, particularly where these are
overlain by volcano-sedimentary sequences (Figure 4).

Discussion

In general, orogenic belts surrounding the Kaapvaal Craton exhibit the
highest heat flow signatures in South Africa, which may be linked to
underlying geological, tectonic and crustal compositional controls,
particularly related to the production of radiogenic material. These
orogenic belts experience varying phases of convergent and extensive
tectonics that often result in: the emplacement of high heat producing
plutonic rocks?-%; the development of sedimentary basins, which
were infilled by mostly siliciclastic sediments interspersed with often
highly radiogenic volcanic extrusive material®; and finally the creation
of complex brittle structural networks that enable thermal convective
dispersion through natural groundwater flow® and seismic-inducing
stress release®.

Our results also highlight that high heat flow is not only restricted to
off-craton regions. Zones near deep cratonic discontinuities also exhibit

South Africa’s low-enthalpy geothermal energy potential

elevated geothermal gradients, which is especially noticeable along the
Colesberg, Thabazimbi-Murchison and Makonjwa Lineaments. These
zones highlight more ancient tectonic activity associated with the
amalgamation and stabilisation of the Kaapvaal Craton'® — processes
that have apparently also imparted elevated heat flow signatures.
These on-craton regions also have high heat producing plutonic rocks
(e.g. Archean granite-gneisses around Mombela and Johannesburg;
and Palaeoproterozoic Bushveld felsic rocks) and overlying volcano-
sedimentary basin sequences that exhibit their own high heat producing
signatures (e.g. the Witwatersrand, Pongola, Transvaal and Springbok
Flats). Anomalous heat flow and underpinning tectonic influences are
also evident with the occurrence of hot springs and higher number of
natural on-craton seismic events around these structures (Figure 4d). In
general, seismicity related to these deep cratonic discontinuities highlight
reactivation associated with a more recent northeast to southwest
oriented extension®', which is in agreement with the present-day stress
state seen in much of South Africa®.

Using the results of this study, together with high-yielding, shallow
groundwater aquifers as a proxy for deeper hydrogeological conditions,
and considering factors of successful development in Germany, we
may highlight the most promising regions for investigating low-enthalpy
geothermal energy development in South Africa (Figure 4). In no
particular order, these areas especially include, but are not necessarily
restricted to: (1) regions of the Cape Mountains, especially the Syntaxial
region; (2) the southern Karoo; (3) the boundary of the Namaqua-Natal
Belt and Kaapvaal Craton north of Durban; (4) the Bushveld Basin near
the Thabazimbi-Murchison Lineament, north of Johannesburg; (5) the
Limpopo Belt.
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Figure 3:  Graphical overview of the calculated geothermal gradients across South Africa. Map includes major tectonic contacts and structures, seismic
activity and earthquake focal mechanisms and hot spring locations.
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(a) Potentially viable low-enthalpy geothermal investigation regions (1-5); based on (b) high heat producing plutonic rocks and overlying volcano-

sedimentary rocks; and (c) approximate groundwater yield (data from the South African Department of Water Affairs). (d) Regional seismicity

(data from the Council for Geoscience).

Importantly, the cost of initial exploration and development of low-
enthalpy geothermal energy is high® and development in Germany was
largely enabled by a Governmental Renewable Energy Feed-In Tariff
of 15 EURc/kWhe, The impact of financial incentives in South Africa
is also noticeable with the Renewable Energy Independent Power
Producer Procurement Programme, which has resulted in the cost of
wind and solar being reduced by 46% and 71%, respectively." Including
geothermal in this programme could potentially accelerate further
research and development and may result in geothermal being added to
South Africa’s future energy mix.

Conclusions and recommendations

The results of this study suggest that despite geothermal (re)sources
not being part of South Africa’s renewable energy mix, the country does
have some potential for harnessing low-enthalpy geothermal energy. We
therefore recommend that South Africa seriously considers geothermal
energy as another renewable option. However, there are several key
factors that need to be addressed before harvesting of geothermal
energy can occur.

South Africa still needs significant research and data acquisition,
including: high-resolution ground-based geophysics, new and extensive
downhole temperature measurements, structural mapping, and deep
hydrogeological and isotope hydrochemical investigations. These data

South African Journal of Science
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will allow for a more precise evaluation of South Africa’s geothermal
energy potential and also highlight any possible negative impacts,
especially on groundwater quality and inducing seismicity.® Finally,
economic modelling is imperative to design mechanisms to adequately
enable advanced geothermal research and development in South Africa.
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Table 1: Available surface and subsurface temperature data across South Africa

Longitude | Latitude | Type | Name :)r:;) th '(I;ir;\perature :Ineﬂz;\tl/f::r)’ :::E‘:::?‘,ﬁj;:‘)ermal Method® Data source

29.894 -22.836 | Spring | Windhoek 1 40 0 40.00 Thermodynamics Olivier et al., 2011 [54]
29.889 -22.870 | Spring | Masequa 1 40 0 40.00 Thermodynamics Olivier et al., 2011 [54]
30.681 -22.530 | Spring | Sagole 1 46 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
30.167 -22.583 | Spring | Morreeson 1 43 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
30.173 -22.610 | Spring | Tshipise 1 58 0 46.30 Geothermometer (Si) Olivier and Jonker, 2013 [56]
30.058 -22.811 | Spring | Minwamadi 1 32 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
30.195 -22.894 | Spring | Siloam 1 67 0 64.05 Geothermometer (Na-K) | Olivier and Jonker, 2013 [56]
30.184 -22.908 | Spring | Dopeni 1 45 0 45.00 Thermodynamics Olivier et al., 2011 [54]
30.167 -22.917 | Spring | Mphephu 1 43 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
29.383 -22.783 | Spring | Vetfontein 1 30 0 45.00 Thermodynamics Kent, 1949 [45]

29.184 -22.417 | Spring | Evangelina 1 34 0 50.05 Geothermometer (Si) Kent, 1949 [45]

28.617 -22.567 | Spring | Tugela 1 53 0 48.13 Geothermometer (Si) Kent, 1949 [45]

30.850 -23.417 | Spring | Souting 1 44 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
30.666 -23.650 | Spring | Die Eiland 1 42 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
28.617 -24.433 | Spring | Die Oog 1 40 0 46.93 Geothermometer (Si) Kent, 1949 [45]

28.567 -24.450 | Spring | Rhemardo 1 44 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
28.601 -24.566 | Spring | Vischgat 1 40 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
28.301 -24.884 | Spring | Bela Bela 1 52 0 50.05 Geothermometer (Si) Kent, 1949 [45]

28.184 -24.601 | Spring | Loubad 1 34 0 40.89 Geothermometer (Si) Kent, 1949 [45]
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Depth

Temperature

Heat flow

Estimated geothermal

Longitude | Latitude | Type Name (m) °C) (mW/m?) gradient (°C/km) Method® Data source

27.600 -24.567 | Spring | Buffelshoek 1 31 0 48.38 Geothermometer (Si) Kent, 1949 [45]

30.518 -25.391 | Spring | Falcon 1 45 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
30.262 -25.660 | Spring | Machadodorp 1 29 0 49.78 Geothermometer (Si) Kent, 1949 [45]

30.566 -25.953 | Spring | Badplaas 1 53 0 53.16 Geothermometer (Si) Kent, 1949 [45]

29.030 -25.616 | Spring | Amazimtaba 1 28 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
31.175 -26.402 | Spring | Swazi Spa 1 45 0 45.00 Thermodynamics 2‘:2??;;?3;?!;‘?;:T\lg\fszkozom'
30.869 -27.530 | Spring | Natal Spa 1 44 0 45.23 Geothermometer (Si) Kent, 1949 [45]

31.307 -28.012 | Spring | Thangami 1 41 0 45.00 Thermodynamics Hoole, 2000 [49]

31.012 -28.857 | Spring | Shu Shu 1 52 0 45.00 Thermodynamics Hoole, 2000 [49]

30.850 -29.120 | Spring | Lilani 1 40 0 45.00 Thermodynamics Hoole, 2000 [49]

26.715 -30.715 | Spring | Aliwal 1 37 0 35.00 Geothermometer (Si) Kent, 1949 [45]

26.540 -30.650 | Spring | Badfontein 1 30 0 45.00 Thermodynamics Kent, 1949 [45]

25.627 -32.135 | Spring | Cradock Spa 1 31 0 45.95 Geothermometer (Si) Kent, 1949 [45]

23.155 -33.396 | Spring | Toorwater 1 49 0 45.00 Thermodynamics Boekstein, 2012 [55]

21.774 -33.661 | Spring | Calitzdorp Spa 1 35 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
20.902 -33.770 | Spring | Warmwaterberg 1 46 0 35.31 Geothermometer (Si) Kent, 1949 [45]

20.122 -33.698 | Spring | Baden 1 35 0 45.00 Thermodynamics Sgiemnd:fs;:’;:°,\?£e;g 2016, oral
20.113 -33.770 | Spring | Montagu 1 39 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
19.419 -33.730 | Spring | Brandvlei 1 64 0 52.48 Geothermometer (Si) Kent, 1949 [45]

19.267 -33.666 | Spring | Goudini 1 35 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
19.447 -34.221 | Spring | Caledon Spa 1 49 0 52.41 Geothermometer (Si) Olivier and Jonker, 2013 [56]
18.725 -33.467 | Spring | Malmesbury Spa 1 34 0 53.59 Geothermometer (Si) Kent, 1949 [45]

19.029 -32.739 | Spring | Citrusdal 1 43 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
20.293 -28.465 | Spring | Riemvasmaak 1 42 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
25.199 -27.884 | Spring | Nkolo Spa 1 45 0 45.00 Thermodynamics 2‘2?'252;::&?;22?&5\?;22016’
21.767 -33.667 | Spring | Oliphants valley 1 52 0 53.84 Geothermometer (Si) Kent, 1949 [45]
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Depth

Temperature

Heat flow

Estimated geothermal

Longitude | Latitude | Type Name (m) °C) (mW/m?) gradient (°C/km) Method® Data source

19.550 -28.533 | Spring | Warmbad Noord 1 a4 0 45.00 Thermodynamics Olivier and Jonker, 2013 [56]
21.717 -33.667 | Spring | Gamka Valley 1 33 0 45.00 Thermodynamics Kent, 1949 [45]

29.033 -25.350 | Spring | Grovesbad 1 33 0 45.00 Thermodynamics Kent, 1949 [45]

31.100 -27.183 | Spring | Sulphur Springs 1 31 0 47.97 Geothermometer (Si) Kent, 1949 [45]

25.583 -30.867 | Spring | Rooiwal 1 30 0 45.00 Thermodynamics Kent, 1949 [45]

26.917 -28.550 | Spring | Winburg 1 30 0 45.00 Thermodynamics Kent, 1949 [45]

28.650 -30.467 | Spring | Knegha Drift 1 29 0 45.00 Thermodynamics Kent, 1949 [45]

29.300 -24.833 | Spring | Riffontein 1 29 0 50.05 Geothermometer (Si) Kent, 1949 [45]

26.667 -32.833 | Spring | Fort Beaufort 1 29 0 58.85 Geothermometer (Si) Kent, 1949 [45]

21.983 -32.667 | Spring | Stinkfontein 1 29 0 51.06 Geothermometer (Na-K) | Kent, 1949 [45]

30.483 -28.850 | Spring | Etembeni 1 28 0 45.00 Thermodynamics Kent, 1949 [45]

24.450 -32.317 | Spring | Grasrand 1 26 0 45.00 Thermodynamics Kent, 1949 [45]

31.041 -22.889 | Spring | Malahlapanga 1 38 0 45.00 Thermodynamics Grootjans et al., 2010 [52]
31.238 -23.013 | Spring | Mfayeni 1 42 0 45.00 Thermodynamics Grootjans et al., 2010 [52]
31.350 -26.050 | Spring | Mkoba 1 52 0 46.81 Geothermometer (Si) Robins, 2013 [57]

31.167 -26.367 | Spring | Mvuntshini 1 45 0 45.00 Thermodynamics Robins, 2013 [57]

31.183 -26.400 | Spring | Ezulwini 1 40 0 45.00 Thermodynamics Robins, 2013 [57]

31.200 -26.433 | Spring | Lombamba 1 48 0 45.00 Thermodynamics Robins, 2013 [57]

31.167 -26.600 | Spring | Mawelawela 1 46 0 45.00 Thermodynamics Robins, 2013 [57]

31.200 -26.700 | Spring | Ngwepisi 1 46 0 45.00 Thermodynamics Robins, 2013 [57]

31.133 -26.967 | Spring | Mpopoma 1 33 0 45.00 Thermodynamics Robins, 2013 [57]

31.300 -26.700 | Spring | Madubula 1 52 0 45.85 Geothermometer (Si) Robins, 2013 [57]

31.700 -26.183 | Spring | Fairview 1 38 0 45.00 Thermodynamics Robins, 2013 [57]

31.683 -26.700 | Spring | Siphofaneni 1 39 0 45.00 Thermodynamics Robins, 2013 [57]

31.572 -27.329 | Spring | Onverwacht 1 26 0 51.12 Geothermometer (Si) Robins, 2013 [57]

34.023 -18.899 | Spring | Nhambita 1 63 0 47.45 Geothermometer (Si) Merkel and Steinbruch, 2007 [51]
23.167 -24.450 | Spring | Welgevonden 1 44 0 45.00 Thermodynamics Kent, 1949 [45]
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30.850 -23.417 | Spring | Souting 1 33 0 45.00 Thermodynamics Kent, 1949 [45]
30.667 -23.650 | Spring | Letaba 1 42 0 45.00 Thermodynamics Kent, 1949 [45]
31.300 -28.033 | Spring | Black Umfolozi 1 41 0 45.00 Thermodynamics Kent, 1949 [45]
19.717 -28.500 | Spring | Skuitdrif Oos 1 38 0 45.00 Thermodynamics Kent, 1949 [45]
30.167 -22.583 | Spring | Gordonia 1 38 0 45.00 Thermodynamics Kent, 1949 [45]
29.783 -22.971 | Spring | Paddysland 1 40 0 51.58 Geothermometer (Si) Kent, 1949 [45]
30.900 -23.117 | Well Fumani Mine GR1 294 0 52 14.86 Measured Jones, 1988 [16]
30.900 -23.117 | Well Fumani Mine GR24 250 15 56 15.26 Measured Jones, 1988 [16]
30.900 -23.117 | Well Fumani Mine GR25 249 15 55 14.99 Measured Jones, 1988 [16]
26.450 -26.834 | Well Rhenosterhoek DRH18 | 510 10 34 9.66 Measured Jones, 1988 [16]
26466 | -26.834 | Well g:‘;';“terberghoe" 400 9 31 8.86 Measured Jones, 1988 [16]
26.500 -26.817 | Well Rietkuil DRL17 230 10 33 9.79 Measured Jones, 1988 [16]
26.533 -26.750 | Well ;‘;ch’ema“fmtei” 714 11 36 11.39 Measured Jones, 1988 [16]
26.566 -26.700 | Well Brakspruit BBS1 250 10 33 10.03 Measured Jones, 1988 [16]
26.616 -26.600 | Well Mahemsvlei BMV4 579 11 33 10.51 Measured Jones, 1988 [16]
26.866 -26.451 | Well Tweelingfontein BTFI 450 10 33 10.28 Measured Jones, 1988 [16]
29.183 -26.517 | Well Goedehoop 2100 0 44 16.92 Measured Jones, 1988 [16]
29.150 -26.501 | Well Driefontein 1 1402 0 47 15.67 Measured Jones, 1988 [16]
29.166 -26.501 | Well Driefontein2 1784 0 48 16.00 Measured Jones, 1988 [16]
29.150 -26.484 | Well Driefontein 3 1968 0 51 19.62 Measured Jones, 1988 [16]
29.116 -26.501 | Well Winkelhaak 1 1490 0 53 17.67 Measured Jones, 1988 [16]
29.116 -26.467 | Well Winkelhaak 2 1506 0 52 17.33 Measured Jones, 1988 [16]
29.100 -26.451 | Well Winkelhaak 3 1516 0 59 19.67 Measured Jones, 1988 [16]
29.116 -26.434 | Well Winkelhaak 4 2211 0 53 20.38 Measured Jones, 1988 [16]
29.083 -26.467 | Well Winkelhaak 5 1214 0 61 20.33 Measured Jones, 1988 [16]
29.116 -26.451 | Well Winkelhaak 6 1812 0 63 21.00 Measured Jones, 1988 [16]
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29.083 -26.467 | Well Leeuwspruit 1263 0 55 18.33 Measured Jones, 1988 [16]
28.983 -26.401 | Well Grootlaagte 2196 0 60 23.08 Measured Jones, 1988 [16]
28.900 -26.367 | Well Rietfontein 1134 0 52 14.86 Measured Jones, 1988 [16]
28.300 -26.301 | Well Reef Nigel 1387 0 43 12.29 Measured Bullard, 1939 [44]
27.766 -26.251 Well Zuurbult ZA 991 7 44 12.57 Measured Jones, 1988 [16]
27.816 -26.234 | Well Doornkop D2 608 11 36 10.60 Measured Jones, 1988 [16]
27.816 -26.201 | Well Vlakfontein 1028 0 48 13.71 Measured Jones, 1988 [16]
27.666 -26.301 | Well Gemspost GM7 684 8 51 7.94 Measured Jones, 1988 [16]
27.566 -26.401 | Well Doornkloof No. 18 1915 10 50 9.50 Measured Bullard, 1939 [44]
27.216 -26.484 | Well gﬁﬂrgirdm'n“ebm" 2880 0 54 18.00 Measured Bullard, 1939 [44]
Gerhardrninnebron
27.200 -26.467 | Well GMB2 2142 0 44 12.57 Measured Jones, 1988 [16]
27.050 -26.584 | Well Oudedorp 2022 0 55 15.71 Measured Jones, 1988 [16]
26.983 -26.567 | Well Welgedund 2118 0 50 14.29 Measured Jones, 1988 [16]
26.850 -26.767 | Well Stilfontein ST7 658 0 61 15.25 Measured Jones, 1988 [16]
26.833 -26.784 | Well StilfonteinST11 1067 0 46 11.50 Measured Jones, 1988 [16]
26.833 -26.800 | Well Stilfontein ST14 1614 0 56 15.14 Measured Jones, 1988 [16]
26.800 -26.817 | Well Stilfontein ST9 942 0 48 12.00 Measured Jones, 1988 [16]
H fi i
26850 | -26.834 | Well Uacszee“ ontein 1036 9 58 9.20 Measured Jones, 1988 [16]
H fi i
26.800 | -26.850 | Well Hg;tebeeSt ontein 1097 0 54 15.43 Measured Jones, 1988 [16]
26.816 -26.850 | Well :;’;ebe“tfmte'n 1730 0 56 16.00 Measured Jones, 1988 [16]
26.833 -26.867 | Well :grltgbee“fmte'” 1524 0 59 16.86 Measured Jones, 1988 [16]
26.783 26.884 | Well :g:‘:bee“h”te'” 1996 0 44 12.57 Measured Carte, 1954 [46]
26.816 -26.884 | Well :;EEbeeStfome'n 1029 0 72 20.57 Measured Jones, 1988 [16]
26.816 -26.900 | Well Hartebeestfontein 1128 0 66 18.86 Measured Jones, 1988 [16]
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HB9

26.800 -26.900 | Well :;rlt:bee“fmte'” 1585 0 52 14.86 Measured Jones, 1988 [16]
26.800 -26.900 | Well :;Tgbee“fmte'n 1463 0 60 17.14 Measured Jones, 1988 [16]
26.833 26.917 | Well :grltfbee“fmte'” 2073 0 49 14.00 Measured Jones, 1988 [16]
26.816 26.917 | Well :;gebee“fmte'n 1463 0 53 15.14 Measured Jones, 1988 [16]
26.816 -26.917 | Well Buffelsfontein BU3 2012 0 50 14.29 Measured Jones, 1988 [16]
26.816 -26.934 | Well Buffelsfontein BU1 2286 0 50 14.29 Measured Jones, 1988 [16]
26.783 -26.967 | Well Doornkom-West DW1 | 1951 0 54 15.43 Measured Jones, 1988 [16]
26.616 -26.917 | Well Roodepoort R57 1388 12 36 11.96 Measured Carte, 1954 [46]
26.566 -27.100 | Well Wolvehuis WS1 2377 0 52 17.33 Measured Jones, 1988 [16]
26.566 -27.150 | Well Jacoba No. 3 2143 40 16.00 Measured Bullard, 1939 [44]
26.566 27117 | Well soomhom Rivier No. | 1254 13 41 13.23 Measured Bullard, 1939 [44]
26.933 -27.400 | Well Vergenoeg VG1 2438 0 55 27.50 Measured Jones, 1988 [16]
26.550 -27.667 | Well Klein Britanje SB1 997 0 48 16.00 Measured Jones, 1988 [16]
26.483 -27.717 | Well Goud Kwarts SB2 1261 0 48 19.20 Measured Jones, 1988 [16]
26.650 -27.717 | Well Le Roexs Pan RS1 1879 0 53 26.50 Measured Jones, 1988 [16]
36.617 -27.717 | Well Siberia S1 1100 15 50 14.49 Measured Jones, 1988 [16]
26.616 -27.784 | Well Diamant DT1 2469 0 50 25.00 Measured Jones, 1988 [16]
26.633 -27.800 | Well Weltevreden WN5 2073 0 53 26.50 Measured Jones, 1988 [16]
26.633 -27.817 | Well Spes Bona TV2 1768 0 52 26.00 Measured Jones, 1988 [16]
26.650 -27.834 | Well anr};jZ” HeversRust | ;08 0 52 26.00 Measured Jones, 1988 [16]
26.650 -27.850 | Well Rosedale RD1 1768 0 49 24.50 Measured Jones, 1988 [16]
26.733 -27.950 | Well Mooitoekomst M2 1372 0 50 20.00 Measured Jones, 1988 [16]
26.766 -27.950 | Well Mealie Bult MB3 1067 0 47 18.80 Measured Jones, 1988 [16]
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26.700 -28.034 | Well St Helena SH1 2134 10 59 9.70 Measured Jones, 1988 [16]
26.883 -28.034 | Well La Riviera LR7 1646 0 44 17.60 Measured Jones, 1988 [16]
27.000 -28.000 | Well Portland PW1 1006 0 45 18.00 Measured Jones, 1988 [16]
27.000 -28.034 | Well Brooklands BOS1 1036 0 51 17.00 Measured Jones, 1988 [16]
26.800 -28.067 | Well Jurgens Hof 1 2151 0 45 22.50 Measured Jones, 1988 [16]
26.800 -28.067 | Well Jurgens Hof 2 1671 0 44 17.60 Measured Jones, 1988 [16]
26.716 -28.100 | Well Blaauwdrift 1 700 0 60 20.00 Measured Jones, 1988 [16]
26.716 -28.100 | Well Blaauwdrift 2 560 0 49 16.33 Measured Jones, 1988 [16]
26.733 -28.117 | Well Blaauwdrift 3 360 0 53 17.67 Measured Jones, 1988 [16]
26.733 -28.117 | Well Blaauwdrift 4 2139 0 60 30.00 Measured Jones, 1988 [16]
26.733 -28.167 | Well Kalkoen-krans 552 0 51 17.00 Measured Jones, 1988 [16]
26.700 -28.184 | Well Palmietkuil 1 1348 0 51 20.40 Measured Jones, 1988 [16]
26.716 -28.217 | Well Palmietkuil 2 2244 0 52 26.00 Measured Jones, 1988 [16]
26.716 -28.217 | Well Palmietkuil 3 2310 0 57 28.50 Measured Jones, 1988 [16]
26.750 -28.217 | Well Palmietkuil 4 2750 0 46 23.00 Measured Jones, 1988 [16]
26.700 -28.250 | Well Boschluis Spruit 1120 0 51 20.40 Measured Jones, 1988 [16]
26.733 -28.267 | Well Excelsior 376 0 55 18.33 Measured Jones, 1988 [16]
26.766 -28.234 | Well Mooivlakte 1049 0 56 18.67 Measured Jones, 1988 [16]
26.800 -28.250 | Well Doorndeel 1068 0 50 16.67 Measured Jones, 1988 [16]
26.766 -28.267 | Well Leeuwbult 1 945 0 55 18.33 Measured Jones, 1988 [16]
26.766 -28.284 | Well Leeuwbult 2 851 0 53 17.67 Measured Jones, 1988 [16]
26.700 -28.284 | Well Avondsrust 1 760 0 41 13.67 Measured Jones, 1988 [16]
26.716 -28.284 | Well Avondsrust2 780 0 48 16.00 Measured Jones, 1988 [16]
28.583 -25.467 | Well Fairfield FF1 800 0 42 13.13 Measured Jones, 1988 [16]
28.583 -25.484 | Well Varkfontein VF1 393 0 40 10.00 Measured Jones, 1988 [16]
17.882 -28.700 | Well Haib HB77 540 19 64 18.66 Measured Jones, 1987 [17]
17.699 20534 | wen | NababeepFlatMine | g 20 61 19.43 Measured Jones, 1987 [17]

FM143
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17.916 -29.534 | Well Hoogkraal East HKE26 | 467 20 76 19.90 Measured Jones, 1987 [17]
18.016 -29.534 | Well Homeep East HE177 472 19 65 18.62 Measured Jones, 1987 [17]
17.966 29.634 | Well gz;‘;mberg WestCCX- | cgq 12 60 19.29 Measured Jones, 1987 [17]
17.967 -29.667 | Well ;_":)r;’é‘fberg West 660 12 59 17.82 Measured Jones, 1987 [17]
18.749 -29.217 | Well Aggeneys AG140 670 0 55 15.71 Measured Jones, 1987 [17]
19.649 -29.350 | Well Puts-berg POG32 345 17 74 17.17 Measured Jones, 1987 [17]
20.116 29334 | Well 4A;'j°i”i”g Geelvioer G- | ) ., 18 60 17.65 Measured Jones, 1987 [17]
20.783 -29.067 | Well Rozynen Bosch RB56 434 21 81 20.93 Measured Jones, 1987 [17]
21.049 -28.284 | Well Arcachap AP11 462 20 52 25.00 Measured Jones, 1987 [17]
21.649 -29.017 | Well Boksputs KC12 210 14 39 13.54 Measured Jones, 1987 [17]
21.783 -29.334 | Well Jacomyns Pan PC2-27 445 17 60 16.90 Measured Jones, 1987 [17]
21.783 -29.334 | Well Jacomyns Pan PC2-30 160 14 53 14.02 Measured Jones, 1987 [17]
22.299 -29.967 | Well Vogelstruisbult V41 703 0 48 24.00 Measured Jones, 1987 [17]
21.499 -30.500 | Well Dubbelde Vlei 1497 0 64 22.46 Measured Bullard, 1939 [44]
21.333 -32.684 | Well Sambokkraal 1760 0 58 25.00 Measured Gough, 1963 [48]
21.333 -32.984 | Well Koegelfontein 850 0 61 25.00 Measured Gough, 1963 [48]
22.583 -32.767 | Well Bothadale 1457 0 54 25.00 Measured Gough, 1963 [48]
24.350 -32.717 | Well Kalkkop 299 0 51 25.00 Measured Gough, 1963 [48]
32.466 -27.724 | Well ZD 1/71 1063 0 0 32.30 Measured Hicks et al., 2014 [58]
32.686 -27.071 | Well ZE1/71 1900 0 0 25.40 Measured Hicks et al., 2014 [58]
32.597 -27.216 | Well ZF 1/72 1921 0 0 27.20 Measured Hicks et al., 2014 [58]
32.570 -27.569 | Well 2G 1/72 1515 92 0 44.60 Measured Hicks et al., 2014 [58]
32.420 -28.244 | Well ZU 1/77 6083 140 0 25.00 Measured Hicks et al., 2014 [58]
25.664 -33.585 | Well AD 1/68 0 0 0 37.20 Thermodynamics Hicks et al., 2014 [58]
25.891 -33.571 | Well NA 3/70 3082 85 0 37.20 Measured Hicks et al., 2014 [58]
25.840 -33.703 | Well VO 1/71 2878 87 0 37.20 Measured Hicks et al., 2014 [58]
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28.480 -29.170 | Well BTR102 176 0 83 47.70 Measured Jones, 1992 [18]

28.478 -29.142 | Well BTR123 320 0 73 41.95 Measured Jones, 1992 [18]

28.446 -28.925 | Well BTR129 150 0 82 46.59 Measured Jones, 1992 [18]

28.478 -28.850 | Well BTR112 200 0 70 37.84 Measured Jones, 1992 [18]

28.473 -28.817 | Well BTR113 263 0 55 31.98 Measured Jones, 1992 [18]

28.455 -28.705 | Well DTR210 130 0 39 19.12 Measured Jones, 1992 [18]

28.455 -28.705 | Well DTR210 197 0 46 13.26 Measured Jones, 1992 [18]

28.438 -28.632 | Well DTR202 160 0 41 15.77 Measured Jones, 1992 [18]

28.436 -28.584 | Well DTR103 220 0 48 18.46 Measured Jones, 1992 [18]

28.431 -28.505 | Well DTR118 120 0 52 20.00 Measured Jones, 1992 [18]

28.426 -28.492 | Well DTR119 110 0 61 23.46 Measured Jones, 1992 [18]

28.418 -28.479 | Well DTR121 94 0 46 17.69 Measured Jones, 1992 [18]

28.416 -28.474 | Well DTR134 80 0 37 14.23 Measured Jones, 1992 [18]

30.100 -22.301 | Well Messina 0-32 243 0 57 25.00 Measured Carte, 1954 [46]

31.083 -25.684 | Well New Consort Mine 1340 20 49 19.52 Measured Carte and Van Rooyen, 1969 [15]
30.683 -23.901 | Well Wiegel Shaft WS68 600 11 55 11.48 Measured Carte and Van Rooyen, 1969 [15]
27.500 -26.417 | Well Leeuwpoort E1E 2740 14 46 13.73 Measured Carte and Van Rooyen, 1969 [15]
27.250 -25.667 | Well Rustenburg 1070 0 46 15.33 Measured Carte and Van Rooyen, 1969 [15]
29.900 -24.317 | Well Umkoanesstad US9 610 21 47 25.00 Measured Carte and Van Rooyen, 1969 [15]
26.466 -28.700 | Well Brandfort 1580 0 58 23.20 Measured Carte and Van Rooyen, 1969 [15]
24.666 -30.084 | Well Petrusville 700 0 69 33.66 Measured Carte and Van Rooyen, 1969 [15]
28.766 -28.384 | Well Kestell No. 7 1402 0 54 21.60 Measured Carte, 1954 [46]

29.383 -28.684 | Well Hopewell GSO1 1040 30 69 30.00 Measured Carte and Van Rooyen, 1969 [15]
32.100 -28.350 | Well Somkele S1 2914 88 68 30.00 Measured Carte and Van Rooyen, 1969 [15]
22.883 -27.700 | Well Bishops Wood BW1 1040 0 48 16.00 Measured Carte and Van Rooyen, 1969 [15]
22.949 -27.850 | Well Dingle D11 850 0 52 14.86 Measured Carte and Van Rooyen, 1969 [15]
26.833 -30.900 | Well Weltevreden WE1/66 1100 18 49 19.00 Measured Carte and Van Rooyen, 1969 [15]
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29.266 -30.167 | Well Oakham SW1/67 1220 21 54 25.00 Measured Carte and Van Rooyen, 1969 [15]
19.826 -32.842 | Well KZF-1 655 37 0 53.00 Measured de Kock et al., 2015 [59]
21329 | -32.669 | Well | SA1/66 2975 66 0 26.00 Measured }’;’gfdford and Chevallier, 2002
20454 | -32.617 | Well | KL1/165 3184 77 0 26.00 Measured }’;’gfdford and Chevallier, 2002
26.840 -30.898 | Well WE 1/66 2473 73 0 26.00 Measured Viljoen et al., 2010 [53]

27.448 -30.183 | Well TK 1/75 0 0 0 36.90 Thermodynamics Viljoen et al., 2010 [53]

27.617 -33.883 | Well Zwartkops 1036 55 0 53.00 Measured Kent, 1949 [45]

25.733 -30.050 | Well TGl 1433 37 0 26.00 Measured Kent, 1949 [45]

26.733 -28.100 | Well JRI 1085 34 0 31.00 Measured Kent, 1949 [45]

26.817 -28.100 | Well VK1 780 33 0 42.00 Measured Kent, 1949 [45]

27.818 -26.200 | Well Vlakfontein 1106 26 0 7.45 Measured Krige, 1939 [14]

27.765 -26.251 | Well Zuurbult 1067 27 0 7.74 Measured Krige, 1939 [14]

26.995 -26.572 | Well Welgegund 84 2280 39 0 8.48 Measured Krige, 1939 [14]

26.820 -26.316 | Well Roodepoort 57 1896 41 0 10.74 Measured Krige, 1939 [14]

26.467 -27.710 | Well Goudkwarts 1357 36 0 12.08 Measured Krige, 1939 [14]

26.714 -28.032 | Well St Helena 2297 47 0 9.28 Measured Krige, 1939 [14]

26.803 -26.807 | Well Stilfontein 1737 37 0 9.57 Measured Bouwer, 1954 [47]

26.831 -26.923 | Well Buffelsfontein 2461 45 0 10.44 Measured Bouwer, 1954 [47]

26.613 -27.779 | Well Diamant 2657 52 0 12.35 Measured Bouwer, 1954 [47]

26.625 -27.836 | Well Spes Bona 2428 50 0 12.28 Measured Bouwer, 1954 [47]

26.737 -27.243 | Well Vergenoeg 2625 50 0 11.72 Measured Bouwer, 1954 [47]

26.715 -27.832 | Well Weltevreden 2231 48 0 13.39 Measured Bouwer, 1954 [47]

28.586 -32.245 | Well KWV-1 2200 80 0 40.00 Measured Campbell et al., 2016 [5]

"Method: ‘Thermodynamics’ implies that the gradient is calculated using an inferred reservoir depth, based on available geophysical data, surrounding heat flow and

downhole temperature measurements (e.g. Fourier’s Law); ‘Geothermometer’ uses solute-based (silica or sodium-potassium) hydrochemical data and ‘Measured’ uses

actual borehole temperature measurements.
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